Controlled Document Confirm revision before using

DOCUMENT CONTROL

© 2009 EOS Technologies, Inc., Tucson, AZ, USA

This document and enclosed information remains the property of EOS Technologies, Inc. Information herein may not be copied nor disclosed without written consent of EOST Management.

Issue: 2

Prepared:	D. Shelby Stubbe	Date: 2/27/2009
Checked:	Bruce Cook	Date: 2/27/2009
Approved:	D. Shelby Stubbe	Date: 2/27/2009
Configured:	Edith Hatch	Date: 2/27/2009

Document Revisions

Issue	Date	Description	Prep	Chk	Appr
1	9/20/2006	Initial Release	DSS	KRH	KRH
2	2/27/2009	Updated formatting, removed unnecessary inspection items, revised test procedures.	DSS	BC	DSS

TABLE OF CONTENTS

1	IN	FRODUCTION	5
	1.1	SCOPE	5
	1.2	CONFIGURATION	5
	1.3	REFERENCES	5
	1.4	DEFINITIONS AND ACRONYMS	5
	1.5	GENERAL	
	1.6		6
	1.0		0 6
	1.7		0 2
	1.0		0
	1.9		0
_	1.10		6
2	INS	SPECTIONS	7
	2.1	SYSTEM DESCRIPTION	8
	2.1.	1 Inspection Objective and Scope	8
	2.1.	2 Safety Requirements	8
	2.1.	3 Test Equipment	8
	2.1.	4 Inspection Results	8
	2.2		10
	2.2.	1 Inspection Objective and Scope	10
	2.2.	2 Safety Requirements	10
	2.2.	5 Test Equipment	10
	23	PRIMARY MIRROR COVER	11
	2.0	1 Inspection Objective and Scope	11
	2.3.	2 Safety Requirements	11
	2.3.	3 Test Equipment	11
	2.3.	4 Inspection Results	11
	2.4	TELESCOPE EQUIPMENT	12
	2.4.	1 Inspection Objective and Scope	.12
	2.4.	2 Safety Requirements	12
	2.4.	3 Test Equipment	12
	2.4.	4 Inspection Results	12
3	TE	STS	14
	3.1	TELESCOPE AXIS CONTROL: AZIMUTH AND ELEVATION AXES RANGE OF MOTION	15
	3.1.	1 Test Objective and Scope	15
	3.1.	2 Reference Documents	15
	3.1.	3 Safety Requirements	15
	3.1.	4 Test Equipment	15
	3.1.	5 Test Procedure	15
	3.1. 2.2		10
	ა.z	TELESCOPE ANS CONTROL: SLEW RATES AND ACCELERATIONS	17
	3.Z. 2.2	1 I LEST UNJECTIVE and Scope	17
	ა.∠. ვე	2 Neierence Ducuments 3 Safaty Raquiramants	17
	3.2	4 Test Equipment	17
	3.2	5 Test Procedure	17
	3.2.	6 Test Results	18
	3.3	TELESCOPE AXIS CONTROL: POINTING ACCURACY	20
	3.3.	1 Test Objective and Scope	20

3.3.2	Reference Documents	. 20
3.3.3	Safety Requirements	. 20
3.3.4	Test Equipment	. 20
3.3.5	Test Procedure	. 20
3.3.6	Note	. 20
3.3.7	Test Results	. 21
3.4 TE	ELESCOPE AXIS CONTROL: TRACKING ACCURACY	. 22
3.4.1	Test Objective and Scope	. 22
3.4.2	Reference Documents	. 22
3.4.3	Safety Requirements	. 22
3.4.4	Test Equipment	. 22
3.4.5	Test Procedure	. 22
3.4.6	Test Results	. 23
3.5 OI	PTICS: WAVEFRONT QUALITY	. 24
3.5.1	Test Objective and Scope	. 24
3.5.2	Reference Documents	. 24
3.5.3	Safety Requirements	. 24
3.5.4	Test Equipment	. 24
3.5.5	Note	. 24
3.5.6	Test Procedure	. 24
3.5.7	Test Results	. 25
3.6 SE	ECONDARY ACTIVE TIP/TILT FOCUS SYSTEM	. 26
3.6.1	Test Objective and Scope	. 26
3.6.2	Reference Documents	. 26
3.6.3	Safety Requirements	. 26
3.6.4	Test Equipment	. 26
3.6.5	Test Procedure	. 26
3.6.6	Test Results	. 27
3.7 ST	RUCTURAL RESONANCE	. 28
3.7.1	Test Objective and Scope	. 28
3.7.2	Reference Documents	. 28
3.7.3	Safety Requirements	. 28
3.7.4	Test Equipment	. 28
3.7.5	Test Procedure	. 28
3.7.6	Test Results	. 29

2.4 Meter Alt-Azimuth Telescope

Factory and Site Acceptance Test

1 INTRODUCTION

This document describes the inspection, test procedures and equipment used to perform the pre-shipment Factory Acceptance Test (FAT) of the 2.4 m Telescope in accordance with the contract, the technical specifications, attachments and annexes between the University of California Observatory/Lick (UCO/Lick) and EOS Technologies Inc. (EOST).

The reference numbering system used in this Acceptance Test document corresponds to the numbering system used in Contract Appendix C: 2.4m Telescope Specification for The Lick Observatory APF Telescope.

1.1 SCOPE

This document outlines the test methods to be used to test or inspect the listed contract requirements or specifications. Where appropriate, high level tests of pointing, tracking and wavefront error are performed on-sky to validate the full system functionality. It should be noted that no test will be performed unless prior agreement is reached by the parties and the tests are entered into this document.

1.2 CONFIGURATION

This document has been configured as ATP-10609-2 and is a designated controlled document under the EOST Quality System.

1.3 REFERENCES

The following source documents may be used as reference materials for this document:

• Contract Agreement Number CTR-4875-1

1.4 DEFINITIONS AND ACRONYMS

- COTS Commercial off the Shelf
- CTR Contract document
- EOST EOS Technologies, Inc.
- FAT Factory Acceptance Test
- RMS Root Mean Square
- SAT Site Acceptance Test
- TCC Telescope Control Computer
- UCO University of California Observatory

1.5 GENERAL

Factory Acceptance Tests (FAT) in the University of California Observatory/Lick (UCO/Lick) contract Agreement Number CTR-4875-1 dated 30 July 2003. These tests are required to satisfy clause 2.1 and clause 10.

1.6 DELIVERABLE ITEM

The 2.4 Meter Alt-Azimuth Telescope acceptance test documentation is deliverable as per Appendix B of the Contract.

1.7 RECORDS TO BE KEPT

All inspection and test results are to be recorded in this document and stored with the 2.4 Meter Alt-Azimuth Telescope documentation. Refer to Quality Procedure QIPT-T2973-3 Document and Data Control.

1.8 LIFETIME DISCUSSION

The telescope has been designed using components that will last indefinitely under the calculated loads assuming routine maintenance has been performed. No Lifetime or destructive Test to Failure testing is required or planned. The design life of the telescope is 20 years, meaning that all components and designs are based on established technologies and products.

1.9 ENVIRONMENTAL DISCUSSION

The telescope has been designed for operation in varying temperatures. All component materials have been matched to eliminate or minimize expansion and contraction problems caused by large temperature changes.

As the EOST Tucson site has no capacity for testing large assemblies over extremes of temperature and/or humidity, there is no special environmental testing planned. The telescope will be tested at the EOST Assembly and Test facility in Tucson, Arizona under ambient conditions which include a humidity range of 20% to 95% and temperatures from 10 °C to 30 °C. During the winter months, the temperature may fall as low as 0 °C.

The test facilities and equipment used in the various categories of tests include:

- 1. Initial testing performed at EOST Assembly and Test facility using EOST equipment.
- 2. Image quality testing performed on-sky with Shack-Hartmann wavefront sensor.
- 3. Tracking tests also performed on-sky.
- 4. Final testing performed on-site.

1.10 TEST EQUIPMENT AND CALIBRATION

EOST maintains all inspection measuring and test equipment calibration according to the current revision of Quality Procedure QIPT-T2920. This procedure complies with the ISO-9001-2000 standard. Documentation and compliance reports are available upon request.

2 INSPECTIONS

This section describes all inspections to be undertaken during the factory acceptance phase.

In general inspections take the following forms:

- The inspection of commercial off the shelf (COTS) manufacturer's data and or test reports.
- The physical inspection of a part or sub-assembly in order to verify its existence and or performance.
- The inspection of a manufacturing drawing or optical design to verify design meets functional specification.

No procedures are required or provided for the purpose of inspection.

2.1 SYSTEM DESCRIPTION

2.1.1 Inspection Objective and Scope

The purpose of this inspection is to verify that the telescope complies with the referenced specifications.

2.1.2 Safety Requirements

General safety procedures should be observed.

2.1.3 Test Equipment

• There is no test equipment associated with this inspection.

2.1.4 Inspection Results

Item #	Description	Ref.	Contract Requirement	Notes	Pass/ Fail
1	Azimuth Encoders	1	minimum 2 read heads	Same as 1.8 m but with minimum 2 read heads instead of 4	
2	Elevation Encoders	1	minimum 2 read heads	Same as 1.8 m but with minimum 2 read heads instead of 4	
3	Active Collimation	1.3	The telescope uses a computer controlled, articulated secondary mirror to maintain the primary and secondary mirror alignment through tip and tilt of the secondary.	Same quasi-static actuator as 1.8 m, without fast tip/tilt. Existing actuators can accommodate the larger secondary mirror for the 2.4 m telescope	
4	Active Collimation	1.3	The control system provides features that include compensation for misalignments due to gravity flexure		

	Name	Signature
Inspection Conducted By:		
Inspection Accepted By:		
	Test Date	

2.2 PRIMARY MIRROR SUPPORT

2.2.1 Inspection Objective and Scope

The purpose of this inspection is to verify that the telescope complies with the referenced specifications.

2.2.2 Safety Requirements

General safety procedures should be observed.

2.2.3 Test Equipment

• There is no test equipment associated with this inspection.

2.2.4 Inspection Results

Item #	Description	Ref.	Contract Requirement	Notes	Pass/ Fail
1	M1 Support Type	4.6	Passive		
2	M1 Axial Support	4.6	27 point whiffle tree		
3	M1 Lateral Support	4.6	12 point counterweight		

	Name	Signature
Inspection Conducted By:		
Inspection Accepted By:		
	Test Date	

2.3 PRIMARY MIRROR COVER

2.3.1 Inspection Objective and Scope

The purpose of this inspection is to verify that the telescope complies with the referenced specifications.

2.3.2 Safety Requirements

General safety procedures should be observed.

2.3.3 Test Equipment

• There is no test equipment associated with this inspection.

2.3.4 Inspection Results

Item #	Description	Ref.	Contract Requirement	Notes	Pass/ Fail
1	M1 Cover	4.7	Protect primary mirror against settling dust when closed Protect against blunt impacts from above of < 20 kg-m/s Present minimal cross section for wind shake		

	Name	Signature
Inspection Conducted By:		
Inspection Accepted By:		
	Test Date	

2.4 TELESCOPE EQUIPMENT

2.4.1 Inspection Objective and Scope

The purpose of this inspection is to verify that the telescope complies with the referenced specifications.

2.4.2 Safety Requirements

General safety procedures should be observed.

2.4.3 Test Equipment

• There is no test equipment associated with this inspection.

2.4.4 Inspection Results

Item #	Description	Ref.	Contract Requirement	Notes	Pass/ Fail
1	Horizon Stay Bar	7.1	1 supplied (For maintenance, e.g. mirror cell removal)	Stay bar replaced with locking pins	
2	Zenith Stay Bar	7.1	1 supplied (combined with horizon stay bar)	Stay bar replaced with locking pins	
3	Azimuth Rotation Lock	7.1	For protection of maintenance personnel (supplied)		
4	Cable Ways and Wraps	7.2	Expandable cable paths are provided through the elevation and azimuth axes Custom wraps can be provided for the instrument rotators, if fitted The actual cable routing is customized for the specific application and is dependent on the choice of enclosure (That is, the azimuth cable wrap is not required in a co-rotating enclosure)	No azimuth wrap is required with the co-rotating dome	

	Name	Signature
Inspection Conducted By:		
Inspection Accepted By:		
	Test Date	

3 TESTS

The following sections describe items to be tested by EOST in order to verify telescope system function against the contract statement of work.

Where required test procedures are described. These test procedures are provided to the customer in this document. Each test will be witnessed by the customer at their discretion. Each test will be signed by both EOST and the customer and a pass or fail status will be assigned. Tests that failed will be assessed and the reason for failure will be corrected if applicable and the test repeated. If it is found that the test procedure is not valid it will be revised. The revised test procedure will be in agreed upon with the customer prior to re-testing.

3.1 TELESCOPE AXIS CONTROL: AZIMUTH AND ELEVATION AXES RANGE OF MOTION

3.1.1 Test Objective and Scope

The objective of this test is to verify that the motion range of azimuth rotation is +/- 270 ° from the center reference and that the range of altitude motion is 0 ° to 90 ° from zenith.

3.1.2 Reference Documents

• 2.4 Meter Alt-Azimuth Telescope Contract Number CTR-4875-1

3.1.3 Safety Requirements

• Remain a safe distance from the telescope as it rotates.

3.1.4 Test Equipment

• No special equipment is required.

3.1.5 Test Procedure

- 1. Using the Telescope application, home the telescope axes.
- 2. Command an azimuth angle of -270° .
- 3. Record the reported position and verify compliance.
- 4. Command an azimuth angle of $+ 270^{\circ}$.
- 5. Record the reported position and verify compliance.
- 6. Move the telescope to its zenith position (90°).
- 7. Record the reported position and verify compliance.
- 8. Move the telescope to its horizon position (0°).
- 9. Record the reported position and verify compliance.
- 10. Command the telescope to hold position (closed loop).
- 11. Manually trigger each Elevation and Azimuth inner limit and failsafe limit to verify functionality.
- 12. Review the results and assign pass/fail status.

3.1.6 Test Results

Item #	Description	Reference	Contract Requirement	Test Results	Pass/ Fail
1	Azimuth Rotation	2	\pm 270 ° from center reference (± 240 ° limited by enclosure AZ wrap)		
2	Elevation Rotation	2	0 ° to 90 ° from zenith, both directions (continuous 180° from horizon to horizon) (0 ° to 90° hard limits installed to protect enclosure)		

	Name	Signature
Test Conducted By:		
Test Accepted By:		
	Test Date	

3.2 TELESCOPE AXIS CONTROL: SLEW RATES AND ACCELERATIONS

3.2.1 Test Objective and Scope

The objective of this test is to verify that the slew rates and accelerations of the telescope system meet the stated requirements.

3.2.2 Reference Documents

• 2.4 Meter Alt-Azimuth Telescope Contract Number CTR-4875-1

3.2.3 Safety Requirements

• Remain a safe distance from the telescope as it rotates.

3.2.4 Test Equipment

• Stopwatch

3.2.5 Test Procedure

- 1. Using the Telescope application, home the telescope axes.
- 2. Command the telescope to perform an azimuth slew of 16° from its current position.
- 3. Using the stopwatch, measure the time to complete the slew.
- 4. Command the telescope to perform an azimuth slew of 56° from its current position.
- 5. Using the stopwatch, measure the time to complete the slew.
- 6. Command the telescope to perform an azimuth slew of 196° from its current position.
- 7. Using the stopwatch, measure the time to complete the slew.
- 8. Command the telescope to perform an elevation slew of 4° from its current position.
- 9. Using the stopwatch, measure the time to complete the slew.
- 10. Command the telescope to perform an elevation slew of 24° from its current position.
- 11. Using the stopwatch, measure the time to complete the slew.
- 12. Command the telescope to perform an elevation slew of 84° from its current position.
- 13. Using the stopwatch, measure the time to complete the slew.
- 14. Verify that all measured times are within ±1 second of the calculated ideal times and determine pass/fail status.

- 15. Command the Tertiary rotator to move to the Left Nasmyth Port.
- 16. Command the Tertiary rotator to move to the Right Nasmyth Port.
- 17. Measure and record the time required to complete the move.
- 18. Command the Tertiary rotator to move to the Left Nasmyth Port.
- 19. Measure and record the time required to complete the move.

Axis	Distance (degrees)	Minimum Acceleration (deg/s ²)	Minimum Slew Rate (deg/s)	Calculated Time (s)	Measured Time (s)
Azimuth	16	1	4	8	
Azimuth	56	1	4	18	
Azimuth	196	1	4	53	
Elevation	4	1	2	4	
Elevation	24	1	2	14	
Elevation	84	1	2	44	

3.2.6 Test Results

Item #	Description	Reference	Contract Requirement	Test Results	Pass/ Fail
1	Slew Rates	2	> 4 % (azimuth) > 2 % (elevation)		
2	Slew Accelerations	2	>1 ^o /s ² (azimuth) >1 ^o /s ² (elevation)		
3	Tertiary Rotator	7.4	Rotates the tertiary mirror about the primary optical axis to direct the telescope beam to one of two Nasmyth Ports. Time to beam switch is < 1 min, remotely actuated		

2.4 Meter Alt-Azimuth Telescope Factory Acceptance Test ATP-10609-2

	Name	Signature
Test Conducted By:		
Test Accepted By:		
	Test Date	

3.3 TELESCOPE AXIS CONTROL: POINTING ACCURACY

3.3.1 Test Objective and Scope

The objective of this test is to verify that the pointing accuracy of the telescope system is better than 3 arcsec Root Mean Square (RMS) over the useable elevation range in the factory.

3.3.2 Reference Documents

• 2.4 Meter Alt-Azimuth Telescope Contract Number CTR-4875-1

3.3.3 Safety Requirements

Remain a safe distance from the telescope as it rotates.

3.3.4 Test Equipment

- StarCal software
- Camera at non-drive side Nasmyth port

3.3.5 Test Procedure

- 1. Set a camera at the non-drive side Nasmyth port.
- 2. Verify that the location of the Shack-Hartmann reference LED is marked on the video monitor.
- 3. View the currently installed mount model and record the post-fit RMS pointing error.
- 4. Power down the telescope controls system.
- 5. Start up the telescope control system and start the telescope server on the TCC.
- 6. Using Starcal, start a new set of observations and record the positions of ~25 stars distributed throughout the sky.
- 7. Using these observations, compute the pre-fit RMS error and verify that it is on the order of 3 arcseconds.
- 8. Review the results and assign pass/fail status.

3.3.6 Note

Due to the limited sky coverage in the factory, observations can only be made for stars within approximately 20-25 degrees from zenith. The installed mount model and all test observations will be limited to stars in this range.

3.3.7 Test Results

Item #	Description	Reference	Contract Requirement	Test Results	Pass/ Fail
1	Pointing Accuracy	2.1	Better than 3 arcsec RMS to 70 ° zenith angle after mount modeling correction		

	Name	Signature
Test Conducted By:		
Test Accepted By:		
	Test Date	

3.4 TELESCOPE AXIS CONTROL: TRACKING ACCURACY

3.4.1 Test Objective and Scope

The objective of this test is to verify the tracking smoothness over 10 second, 10 minute and 1 hour periods, neglecting seeing effects.

3.4.2 Reference Documents

• 2.4 Meter Alt-Azimuth Telescope Contract Number CTR-4875-1

3.4.3 Safety Requirements

Remain a safe distance from the telescope as it rotates.

3.4.4 Test Equipment

- Camera at the non-drive side Nasmyth port
- Centroid tracking and logging software and computer
- Microsoft Excel software

3.4.5 Test Procedure

- 1. Power down the telescope controls system.
- 2. Start up the telescope control system and start the telescope server on the TCC.
- 3. Acquire and track a suitable star.
- 4. Start the centroiding software.
- 5. Center the star image on the video monitor and optimize focus if necessary.
- 6. Measure and set the pixel scaling factor in the centroiding software by offsetting the telescope by a known amount.
- 7. Set the centroiding software up to collect data at 10 frames per second and average for 1 second to remove the effects of seeing.
- 8. Gather star centroiding data for the 10 second, 10 minute and 60 minute periods.
- 9. Reduce centroiding data to obtain the RMS deviation and record the results.
- 10. Compare the measured results to the contract requirement and assign pass/fail status.

3.4.6 Test Results

ltem #	Description	Reference	Contract Requirement	Test Results	Pass/ Fail
1	Tracking Accuracy	2.1	0.1 arcsec RMS over 10 sec		
2	Tracking Accuracy	2.1	0.5 arcsec RMS over 10 minutes		
3	Tracking Accuracy	2.1	2.5 arcsec RMS over 1 hour		

	Name	Signature
Test Conducted By:		
Test Accepted By:		
	Test Date	

3.5 OPTICS: WAVEFRONT QUALITY

3.5.1 Test Objective and Scope

The objective of this test is to verify that acceptable wavefront quality has been achieved after optical alignment.

3.5.2 Reference Documents

• 2.4 Meter Alt-Azimuth Telescope Contract Number CTR-4875-1

3.5.3 Safety Requirements

Remain a safe distance from the telescope as it rotates.

3.5.4 Test Equipment

- Shack-Hartmann Wavefront Sensor mounted at the non-drive side Nasmyth port
- PC with CCDSoft and ProSH software installed

3.5.5 Note

Wavefront quality testing is performed at the focal position optimized for the existing optics. The Shack-Hartmann focal plane is mounted at approximately 519 mm from the instrument mounting interface.

3.5.6 Test Procedure

- 1. Set the Shack-Hartmann WFS onto the non-drive side Nasmyth port and secure.
- 2. Rotate reference LED into the optical path and power it on.
- 3. Mark the artificial star position on the video monitor.
- 4. Setup the CCDSoft and ProSH software to store data in a folder with the date and telescope name in its title. The ProSH software should also be configured to store a zernike data file to the same directory.
- 5. Using the CCDSoft software, take a reference image.
- 6. Load the reference image into the ProSH software.
- 7. Turn off and rotate reference LED out of the optical path.
- 8. Set the telescope system to image a suitably bright star near zenith and take ~20 images (depending on seeing conditions).
- 9. Copy the results of the exposures from the Zernike file into the Excel spreadsheet and analyze.
- 10. Adjust tip/tilt and focus of M2 if necessary.

- 11. Repeat this procedure until an acceptable wavefront has been obtained.
- 12. Review the results and assign pass/fail status.

3.5.7 Test Results

Item #	Description	Reference	Contract Requirement	Test Results	Pass/ Fail
1	Wavefront Quality	4.2	~ 160 nm (80 % ee in 0.5 arcsec to 2 arcmin Field of View (FOV)) Degrades at Kolmogorov power spectrum Applies at 5 m/s wind and 1 deg C temperature gradient		

	Name	Signature
Test Conducted By:		
Test Accepted By:		
	Test Date	

3.6 SECONDARY ACTIVE TIP/TILT FOCUS SYSTEM

3.6.1 Test Objective and Scope

The objective of this test is to verify that the ranges of motion and slew rates of the secondary mirror mount satisfy the stated requirements.

3.6.2 Reference Documents

• 2.4 Meter Alt-Azimuth Telescope Contract Number CTR-4875-1

3.6.3 Safety Requirements

Observe general safety procedure when working on or near the telescope.

3.6.4 Test Equipment

• Stopwatch

3.6.5 Test Procedure

- 1. Command the secondary tip/tilt axis to move to its center of motion.
- 2. Command the tip/tilt stage to move to + 18 arcsec from the center of motion.
- 3. Record the reported position.
- 4. Command the tip/tilt stage to move to 18 arcsec from the center of motion.
- 5. Record the reported position.
- 6. Using the stopwatch, measure and record the time required for the tip/tilt stage to move through 36 arcsec.
- 7. Command the secondary focus axis to move to its center of motion.
- 8. Command the focus axis to move to + 10 mm from the center of motion.
- 9. Record the reported position.
- 10. Command the secondary focus axis to move to 10 mm form the center of motion.
- 11. Record the reported position.
- 12. Using the stopwatch, measure and record the time required for the focus stage to move through 20 mm.
- 13. Compare the results to the contract requirements and assign pass/fail status.

Axis	Commanded Position	Reported Position
Tip/Tilt	-18 arcsec	
Tip/Tilt	+18 arcsec	
Focus	-10 mm	
Focus	+10 mm	

Axis	Distance Moved	Maximum Velocity	Maximum Time (s)	Measured Time (s)
Tip/Tilt	36 arcsec	5 arcsec/s	7.2	
Focus	20 mm	100 µm/s	200	

3.6.6 Test Results

Item #	Description	Reference	Contract Requirement	Test Results	Pass/ Fail
1	Range (tip/tilt)	5.1	± 18 arcsec		
2	Slew Rate	5.1	> 5 arcsec/s		
3	Focus Range	5.2	± 10 mm travel of secondary mirror		
4	Focus Slew Rate	5.2	> 100 μm/s		

	Name	Signature
Test Conducted By:		
Test Accepted By:		
	Test Date	

3.7 STRUCTURAL RESONANCE

3.7.1 Test Objective and Scope

The objective of this test is to verify that the telescope has a structural resonance greater than 6Hz.

3.7.2 Reference Documents

• 2.4 Meter Alt-Azimuth Telescope Contract Number CTR-4875-1

3.7.3 Safety Requirements

Observe general safety procedure when working on or near the telescope.

3.7.4 Test Equipment

- Accelerometers
- Data Acquisition System
- MatLab software
- Dead Blow Hammer or Wood Block

3.7.5 Test Procedure

- 1. Set the telescope to horizon pointing.
- 2. Mount the accelerometers on the fork tine.
- 3. Connect the data acquisition system to the accelerometers
- 4. Start data acquire.
- 5. Firmly impact the fork tine with the dead blow in the horizontal direction, just above the Nasmyth port.
- 6. Record and store the data.
- 7. Analyze the stored data and determine the lowest resonant frequency of the telescope.
- 8. Review the results and assign pass/fail status.

3.7.6 Test Results

Item #	Description	Reference	Contract Requirement	Test Results	Pass/ Fail
1	Structural Resonance	3	> 6 Hz		

	Name	Signature
Test Conducted By:		
Test Accepted By:		
	Test Date	